格子点と数列と極限

各種SNSで記事を共有
 問題 

座標平面上の点 $(p,q)$ で,$p$ と $q$ がともに整数となる点を格子点という.以下の(1)~(3)を解け.
(1) 自然数 $n$ に対し,$p+2q=n$, $p>0$, $q>0$ を満たす格子点 $(p,q)$ の個数を $a_n$ とするとき,$a_n$ を求めよ.
(2) 自然数 $n$ に対し,$p+2q<n$, $p>0$, $q>0$ を満たす格子点 $(p,q)$ の個数を $b_n$ とするとき,$b_n$ を求めよ.
(3) 極限値 $$\lim_{n \to \infty} \frac{a_n}{n^2},  \lim_{n \to \infty} \frac{b_n}{n^2}$$ をそれぞれ求めよ.

なるほど

格子点を扱う問題は散見されますので,その扱いに慣れておきましょう.

検索キーワード:
座標平面上, 点 $(p,q)$ ,$p$, $q$, 整数, 格子点, 自然数 $n$, $p+2q=n$, $p>0$, $q>0$, $a_n$, $p+2q<n$, $b_n$, 極限値, $\lim_{n \to \infty} \frac{a_n}{n^2}$, $\lim_{n \to \infty} \frac{b_n}{n^2}$.


>>なるほど高校数学の目次に戻る

各種SNSで記事を共有
takara_semi
著者紹介 旧帝大卒.自然科学/社会学/教育学/健康増進医学/工学/数学などの分野、および学際的な研究領域に興味があります.

コメントする

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

CAPTCHA


このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

error: